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Abstract— Optimal charging of stand-alone lead-acid and
lithium-ion batteries is studied in this paper. The objective is
to maximize the charging efficiency. In the lithium-ion case
two scenarios are studied. First only electronic resistance is
considered and in the next step the effect of polarization
resistance is also included. By considering constant model
parameters for the lithium-ion battery analytical solutions exists
for both scenarios using Pontryagins minimum principle. In
lead-acid chemistry the variation of total internal resistance
with state of charge (SOC) is considerable and the optimal
charging problem results in a set of two nonlinear differential
equations with one initial and a final condition to be satisfied.
This so called two point boundary value problem is solved
numerically.

I. INTRODUCTION

Batteries have become an indispensable part of our daily
life. They can be found everywhere, powering our electronic
gadgets, computers, and phones; they have made possible
electrifying the transportation sector, hybrid and electric
cars, and form a critical part of modern energy grids with
renewable energy sources. The need for increased energy
and power density and longer cycle life has spurred much
research and development towards more efficient batteries
and has also called for more effective battery management
systems that monitor and control cell voltages and temper-
atures. Despite the recent developments, the limitations in
power density and also performance reduction at low (high)
temperatures still exist due to high internal resistance of
batteries. A major performance bottleneck in stand-alone or
hybridized battery systems is due to resistive losses during
charge and discharge cycles. When hybridized (e.g. using
supercapacitors [1]), there are extra degree(s) of freedom
for shaping the battery charge and discharge profile and the
energy management strategy can be designed with the goal
of reducing resistive losses and increasing overall system
efficiency.

In stand-alone operation and during discharge, the cycle
is often imposed by the required load and therefore there is
little that can be done in reducing resistive losses. During
charging however, there is the opportunity to choose the
charging time and profile such that resistive losses are
reduced. Battery manufacturers often have a recommended
charging profile which may be sub-optimal.

Optimal charging of lithium-ion batteries is studied in
[2] which has focused on minimizing the charging time
while satisfying specific physical and thermal constraints.
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In [3] the focus has been on optimal charging of stand-
alone supercapacitors and during regenerative braking by
minimizing ohmic losses. Suthar et al. in [4] use a single-
particle model and aim to find the optimal current profile
with the objective of maximizing the charge stored in the
cell in a given time and constraints of minimal damage to
the electrode particles during intercalation. Bashash et al. in
[5] focus on optimizing the timing and rate of charging of
a plug-in hybrid electric vehicle from the power grid where
the goal is to simultaneously minimize the total cost of fuel
and electricity and the total battery health degradation. Op-
timizing the battery charging power in photovoltaic battery
systems is studied in [6] where different objectives such as
charging time, battery life time, and cost of charging are
considered.

The equivalent electric circuit depicted in Fig. 1 is used
to represent the electrical model of the battery in this paper.
In this figure OCV and VT represent the open circuit voltage
and terminal voltage of the battery, respectively.

In this model Rs indicates the ionic and electronic resis-
tance of electrolyte and also the electronic resistance of the
electrode. Charge-transfer resistance R1 is in parallel with the
double layer capacitance C1 which is formed at the interface
between the electrode and electrolyte [7]. At steady state the
sum of Rs and R1 is called the total internal resistance (R)
in this paper. In this study the objective is to maximize the
charging efficiency by minimizing the resistive losses in a
given charging time and a specified range of the battery SOC.
The charging event is assumed to be conducted in a constant
ambient temperature. The charging times of interest are the
ones that meet a standard charging method recommended
by the manufacturer. The reason is that in such charging
conditions the change in temperature of the cell and also
the physical stresses are minimum. This allows to assume
temperature independence of the model parameters and also
neglect the possibilities of thermal runaways.

Fig. 1. Schematic of the single RC model
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The optimal charging problem for the lithium-ion battery
is formulated in two steps. In the first step only Rs is consid-
ered. With the standard charging assumption, the dependence
of Rs on temperature is negligible. The dependence of Rs
on SOC is also shown to be negligible. In the second step
the R-C branch is added to the model and the optimal
control problem is solved by taking into account the effect
of charge transfer resistance and double layer capacitance.
The simplifying assumption of constant R1 and C1 results
is analytical solution for the optimal charging current. This
result could be used as a first step for researchers when
approaching the problem by considering the dependence of
model parameters on SOC and even temperature.

The optimal charging problem for the lead-acid battery
is formulated similar to the first scenario in the lithium-
ion battery except that the total internal resistance (R) is
modeled. The efficiency maximization problem is solved by
considering the dependence of the total internal resistance on
SOC. This problem structure results in a two point boundary
value problem with two nonlinear differential equations.
Numerical methods are used to solve this problem.

II. OPTIMAL CHARGING FORMULATION OF THE
BATTERY

The objective of this optimal control problem for both
battery chemistries is to maximize the charging efficiency
by minimizing the ohmic losses. The battery SOC is an
indicator of the amount of charge stored in the battery at
each time normalized by the maximum acceptable charge.
The dynamics of the SOC as the common state x1(t) for both
lithium-ion and lead-acid batteries, is derived by performing
coulomb counting, using the current fed into the battery.
Considering the charging current as the single input u(t) to
the system, the state equation is governed by the following
differential equation:

d
dt

x1(t) =
u(t)
qmax

(1)

where qmax is the nominal battery capacity. The optimal
charging problem formulation for lithium-ion and lead-acid
batteries is described in the following sections.

A. Optimal Charging of the Lithium-Ion Battery

The lithium-ion battery used in this study represents the
LiFePO4 chemistry. The cell (ANR26650) has a nominal
voltage and capacity of 3.3 V and 2.5 Ah, respectively [8].
1) First scenario: In this scenario only Rs as depicted in
Fig. 1 is considered. The value of Rs is constant and equal
to 0.01Ω. This value is obtained at 25°C by parameteriz-
ing the equivalent electric circuit model of the cell using
pulse-relaxation tests and minimizing the least square error
between the experimental and modeled terminal voltages [9].

The cost function to be minimized is the ohmic losses as-
sociated with Rs during the given charging time t f governed
by the following equation:

J1 =
∫ t f

0
Rsu(t)2dt (2)

Following the variational approach in optimal control and
utilizing the Pontryagin’s minimum principle the Hamilto-
nian is formed as follows:

H(x,u, t) = Rsu(t)2 +λ1(t)
u(t)
qmax

(3)

where λ1(t) is the Lagrange multiplier or the co-state. The
necessary conditions of optimality should be satisfied as
follows:

− ∂H
∂x1

=
dλ1(t)

dt
,

∂H
∂u

= 0 (4)

Knowing that qmax and Rs are constant parameters, the
Hamiltonian in equation (3) will only be a function of the
system input and therefore ∂H

∂x1
will be zero in equation (4).

This indicates that the derivative of the co-state with respect
to time is zero and the co-state should be a constant. Taking
the derivative of the Hamiltonian with respect to the input
and setting it to zero according to equation (4), results in the
following optimal charging current:

u∗(t) =−1
2

1
Rsqmax

λ1 (5)

where ∗ denotes the optimal solution. The parameters λ1, Rs
and qmax are all constants in equation (5) which indicates
that the resulting optimal charging current is also constant.
Integrating equation (1) with the knowledge of u(t) being
constant and using the boundary conditions x1(0) = SOCi
and x1(t f ) = SOC f , the value of this optimal and constant
charging current is derived as follows:

u∗(t) =
qmax(SOC f −SOCi)

t f
(6)

This is in fact the minimizing solution since ∂ 2H
∂u2 = 2Rs > 0.

Given a specific charging time, the most efficient way to
charge the battery will be applying a constant current equal
to equation (6). For example the optimal strategy of charging
the battery from zero charge to full charge in one hour is to
apply a constant current equal to 2.5 A. Smaller constant
currents compared to the optimal constant current result in
lower resistive losses but will not meet the required charging
time. On the other hand higher constant currents compared
to the optimal constant current, result in faster charging but
with higher resistive losses. The standard charging method
recommended by the manufacturer is to charge the battery
with a constant current-constant voltage (CC-CV) protocol
at a rate of 1C (2.5A).
2) Second scenario: In this scenario the R-C branch is
added to the model to include the effect of the polarization
resistance R1. The value of R1 is assumed to be constant and
not a function of temperature or SOC. The value for R1 is
0.016Ω which is an average value over the SOC range [9].

Assume I1 and I2 are the currents passing through R1 and
C1, respectively. Applying the Kirchoff’s current and voltage
laws to the R-C branch the second state equation governing
the dynamics of the current passing through R1 is obtained.
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The problem in this case is to obtain the optimal charging
current for a second order system governed by the following
state equations:

d
dt

x1(t) =
u(t)
qmax

,
d
dt

x2(t) =
1

R1C1
[u(t)− x2(t)] (7)

where the two states x1 and x2 are the SOC of the battery
and the current passing through the polarization resistance
R1. The objective, similar to the first scenario, is to maximize
the charging efficiency. The difference is that the contribution
of the polarization resistance to the total ohmic losses is also
considered. The cost function to be minimized is:

J2 =
∫ t f

0
[Rsu(t)2 +R1x2(t)2]dt (8)

The Hamiltonian in this case is given by the following
equation:

H(x,u, t) = Rsu(t)2 +R1x2(t)2 +λ1(t)
u(t)
qmax

+ λ2(t)
R1C1

[u(t)− x2(t)]
(9)

The necessary conditions for optimality are:

− ∂H
∂x1

=
dλ1(t)

dt
, − ∂H

∂x2
=

dλ2(t)
dt

,
∂H
∂u

= 0 (10)

From the first two conditions the dynamics of the co-states
are derived and from the third condition the optimal input is
obtained as follows:

u∗(t) = (
−1

2Rsqmax
)λ1(t)+(

−1
2RsR1C1

)λ2(t) (11)

Substituting the optimal input into the state equations in
(7), the optimal state dynamics are derived. The result is the
following set of four linear first order ordinary differential
equations (ODE):

d
dt

x1(t) = a1λ1(t)+a2λ2(t)

d
dt

x2(t) = b1x2(t)+b2λ1(t)+b3λ2(t)

d
dt

λ1(t) = 0

d
dt

λ2(t) = c1x2(t)+ c2λ2(t)

(12)

where a1, a2, b1, b2, b3, c1 and c2 are constant parameters
equal to:

a1 =
−1

2Rsq2
max

, a2 =
−1

2RsR1C1qmax
,

b1 =
−1

R1C1
, b2 =

−1
2RsR1C1qmax

,

b3 =
−1

2RsR2
1C2

1
, c1 =−2R1, c2 =

1
R1C1

(13)

Solving this system of linear ODE’s simultaneously re-
sults in four algebraic equations with four unknowns. The

unknown constants are obtained by applying the boundary
conditions specific to this problem which consist of two
initial and two final conditions. The initial and final condition
for x1 = SOC are:

x1(t0) = SOCi, x1(t f ) = SOC f , (14)

where SOCi and SOC f are specified according to the desired
range of charging. In this specific problem the charging time
is specified and fixed while the values of the second state at
the initial and final time are free; this results in the following
equations for the remaining two boundary conditions [10]:

∂h
∂x2

(x2(t0)) = λ2(t0) = 0→ Initial condition for x2

∂h
∂x2

(x2(t f )) = λ2(t f ) = 0→ Final condition for x2

(15)

In general h(x(t f ), t f ) is the term involving the final states
and final time in the cost function which in this study is zero.
Given all boundary conditions, one can solve for the states,
co-states, and the optimal input. Consider charging a battery
cell from zero charge SOCi = x1(0) = 0 to full charge SOC f
= x1(t f ) = 1 in one hour. The results for this example are
depicted in Fig. 2.
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Fig. 2. Optimal charging current, I1, and SOC for charging the lithium-ion
battery from zero to full charge in 1 hour

The optimal charging current for this scenario is slightly
different from the result of the first scenario. The optimal
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input in this case is almost a constant current equal to 2.5 A
in the majority of times. It may be insightful to also show
the result for a fast charging case. Fig. 3 shows the optimal
charging current and the two states of the system when the
cell is charged from zero to full charge in 5 minutes.
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Fig. 3. Optimal charging current, I1, and SOC for charging the lithium-ion
battery from zero to full charge in 5 minutes

This charging strategy is not practical due to thermal
and physical constraints plus safety and battery degradation
problems. Although it may be interesting to observe that by
reducing the charging time the optimal profile differs from
the constant current result observed in the first scenario and
also slow charging in the second scenario.

B. Lithium-Ion Efficiency Analysis

The open circuit voltage (OCV) of the lithium-ion battery
used in this study as a function of SOC is depicted in Fig. 4
[9]. As shown in the figure, the OCV can be approximated
by a linear function using the OCV data in the SOC range
of 10 to 95 percent. This linear function fitting and also
the assumption of a constant total internal resistance (R =
Rs + R1 = 0.026Ω) makes the analytical efficiency analysis
possible. The linear approximation of the OCV is governed
by:

V (t) = aSOC(t)+b (16)

where V (t) is the open circuit voltage of the battery.
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Fig. 4. OCV versus SOC for the lithium-ion battery

In order to find the optimal charging efficiency, the total
energy stored in the battery and energy loss is required. The
efficiency is then:

ρ =
EBattery

EBattery +ELoss
(17)

The energy loss in the battery during optimal charging is
already known and is equal to

∫ t f
0 Ru∗1(t)

2dt where R is the
total internal resistance. The total energy stored in the battery
is:

EBattery =
∫ t f

0
V (t)I(t)dt

=
∫ t f

0
V (t)

dq(t)
dt

dt

=
∫ q f

qi

V (t)dq

(18)

where I(t), V (t) and q(t) are the battery current, OCV and
the charge in ampere-hours, respectively. The relationship
between OCV and the charge stored in the battery is obtained
by considering the fact that:

SOC(t) =
q(t)
qmax

(19)

where qmax is the nominal capacity of the battery in ampere-
hours (Ah). Substituting for SOC in equation (16) from
equation (19) the linear relationship between V (t) and q(t)
is obtained as follows:

V (t) =
a

qmax
q(t)+b (20)

where a and b for this specific battery are 0.156 and 3.226,
respectively. The nominal capacity of the battery is 2.5 Ah.
Performing the integration by substituting V (t) from equation
(20) into equation (18) and using the SOC definition in
equation (19) for the initial and final SOC, the maximum
energy stored in the battery is obtained as follows:
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EBattery = qmax(SOC f −SOCi)[
a
2
(SOC f +SOCi)+b)] (21)

where the unit for energy is watt-hours (Wh). The real
maximum amount of energy which the battery can store
is obtained from integrating the original OCV − q profile
which results in 8.2 Wh for the cell used in this study.
Using equation (21) and charging the battery from zero
charge to full charge, the maximum energy stored in the
battery is calculated as 8.26 Wh. This illustrates that the
linear approximation of OCV for lithium ion battery is an
effective approach to perform analytical efficiency analysis.
Substituting the expressions for Eloss and Ebattery in equation
(17), the optimal charging efficiency of lithium-ion battery
is obtained as follows:

ρ
∗ =

1

1+ Rqmax(SOC f−SOCi)

t f (
1
2 a(SOC f +SOCi)+b)

(22)

where t f is the charging time in hours. Consider charging
the lithium-ion battery from some initial charge SOCi to full
charge (SOC f = 1) then Fig. 5 shows the optimal efficiency
as a function of t f /Rqmax and for four different initial SOCs.
The result shows that starting the charging from a higher
initial SOC results in better charging efficiency.
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C. Optimal Charging of the Lead-Acid Battery

The lead-acid battery used in this study is a AP-12220EV-
NB module with nominal voltage and capacity of 12 volts
and 22 Ah, respectively [11]. The real capacity of the
module is 19.7 Ah which is obtained by discharging the
fully charged module with a small current of 0.55A, from the
upper to the lower voltage limit. Similar to the lithium-ion
battery, specifically designed pulse-relaxation tests such as
the method used in [12] is utilized to derive the total internal
resistance of the cell (R) as a function of SOC. Fig. 6 shows

that the total internal resistance for a lead-acid battery is
strongly dependent on SOC.
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Fig. 6. Total internal resistance versus SOC for the lead-acid battery

The lead-acid battery is modeled by a single internal
resistance and the only state is the state of charge of the
battery governed by equation (1). The optimal control is
subject to minimize the losses associated with the total
internal resistance. Therefore the Hamiltonian is:

H(x,u, t) = R(x1)u(t)2 +λ3(t)
u(t)
qmax

(23)

where R is the total internal resistance and λ3(t) is the
co-state. Here R(x1) is approximated by a second order
polynomial function of the state x1 as follows:

R(x1) = 0.098x2
1−0.12x1 +0.061 (24)

The necessary conditions to be satisfied are:

− ∂H
∂x1

=−dR(x1)

dx1
u2(t) =

dλ3(t)
dt

(25)

∂H
∂u

= 2R(x1)u(t)+
λ3(t)
qmax

= 0 (26)

Solving for u(t) in equation (26) the optimal charging current
is obtained as follows:

u∗(t) =− 1
2qmax

1
R(x1)

λ3(t) (27)

Substituting u∗(t) from equation (27) in equations (1) and
(25), the following set of two coupled nonlinear ODEs are
obtained:

dx1(t)
dt

=− 1
2q2

max

1
R(x1)

λ3(t) (28)

dλ3(t)
dt

=− 1
4q2

max

dR(x1)

dx1

1
R2(x1)

λ
2
3 (t) (29)

Charging the lead-acid battery in t f units of time from
zero to full charge requires the following initial and final
conditions to be satisfied:
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x(0) = SOCi, x(t f ) = SOC f (30)

The system of two nonlinear ODEs with one initial and
another final condition forms a two point boundary value
problem which could only be solved using numerical meth-
ods. The optimal charging current is obtained by solving for
λ3(t) and x1(t) = SOC(t) and substituting in equation (27).

III. NUMERICAL RESULTS

In this section the numerical solution for the optimal
charging of the lead-acid battery is presented.

Optimal charging problem for lead-acid battery was for-
mulated in the previous section. The result was a set of two
nonlinear ODEs with one initial and another final condition.
One way to solve this system of ODEs is to specify the
initial condition for the SOC and iteratively guess the initial
condition for λ3 until SOC reaches the final specified value.
This method could be applied by using ODE solvers in
Matlab. Consider the case of charging the lead-acid battery
module from zero to full charge in one hour. Fig. 7 shows
the variation of optimal charging current, SOC, and λ3 by
time.
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Fig. 7. Optimal charging current, SOC, and λ3 profiles for charging the
lead-acid battery from zero to full charge in 1 hour

As shown in the numerical results the optimal charging
current for lead-acid battery is not a constant current profile
similar to the first scenario in lithium-ion batteries. In order
to compare the constant current charging of the lead-acid
battery with the optimal charging strategy, the energy losses

in both methods are calculated. For the case of charging the
lead-acid battery from zero to full charge in one hour the
energy losses due to the resistive losses with the optimal
charging strategy are 46.18 KJ compared to 48.9 KJ for
constant current charging. This is a 5.5% of less energy
converted to heat which could be significant in terms of
thermal management of battery packs.

IV. CONCLUSION

This paper investigated the optimal charging strategy for
lithium-ion and lead-acid batteries. Formulating the optimal
control problem and utilizing Pontryagin’s minimum prin-
ciple, analytical result existed for the lithium-ion battery
under certain assumptions. In the lead-acid battery case
the results show that the optimal charging current is not
necessarily constant. Constant current charging of lead-
acid battery results in 5.5% higher thermal heating which
could be considered in thermal management studies of lead-
acid batteries. The simplifying assumptions made in this
study, sets the ground for studies on the battery optimal
charging problem in the future. One direction that we will
pursue is applying appropriate thermal constraints to meet
the challenges in problems such as fast charging where the
temperature variation and its effect on model parameters
plays a significant role.
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