
Automated Grading with a Software-Checking Program in the System
Dynamics and Control Curriculum

R. C. Hill and Yasha Parvini

Abstract— Automated assessment tools offer benefits to in-
structors by freeing them from the burden of grading, while
improving student self-learning by providing immediate feed-
back without the need for intervention by an instructor. The
power of such tools has become all the more important
as new technologies enabling the scaling of knowledge dis-
semination have arisen, such as with Massive Open Online
Courses (MOOCs). In this work, the authors provide guidelines
for employing software-checking programs for the automated
grading of assignments in the System Dynamics and Control
curriculum that may not be immediately suited to such tools.
Specifically, techniques are discussed for modifying problems
that may involve symbolic or graphical solutions, or that
may be more open-ended. The approaches proposed in this
paper were piloted in two courses at the University of Detroit
Mercy during the Fall of 2016 and the Winter of 2017. In
these courses, students wrote their solutions as scripts in the
MATLAB programming language within the Cody Coursework
environment offered by the MathWorks. Overall, the authors
found the use of the Cody tool helpful in the instruction of
their courses. The student feedback offered via anonymous
surveys was also generally positive regarding this approach. For
example, in the absence of a person being available to grade
their homework, the students appreciated the availability of the
Cody tool (avg. score of 3.91/5). As a side benefit, the students
also found that this approach to the course helped improve
their general programming skills (avg. score = 3.96/5).

I. INTRODUCTION

The cost of education and college tuition has long risen
at rates that have outpaced inflation. Over each of the last
three decades, specifically, annual increases in 4-year college
tuition have grown at a rate of approximately 3-4% greater
than inflation in the United States [1]. The technological ad-
vancements that have historically improved productivity rates
across industries and helped reduce the costs of goods, have
typically not extended to the field of education. The advent
of the internet and improved content creation and delivery
platforms have the promise to reverse this trend, even at
the university level. Platforms such as YouTube, iTunesU,
the MIT OpenCourseWare project, Khan Academy, and a
variety of Massive Open Online Courses (MOOCs), allow
for the broad dissemination of knowledge and high-quality
lecture material from some of the world’s most preeminent
scholars [2], [3]. These inexpensive delivery mechanisms
greatly reduce the barriers to access to a world-class educa-
tion that typically arise due to a student’s geography and/or
socioeconomic status. The ability to implement meaningful

This work was supported in part by the MathWorks.
Both authors are with the Department of Mechanical Engineer-

ing, University of Detroit Mercy, Detroit, MI 48221-3038, USA
hillrc@udmercy.edu and parvini@udmercy.edu.

assessment of student learning at scale, however, is much
more challenging than simply broadcasting information to a
large audience [4] and must rely on automated assessment
or peer grading [5]. Evaluating one approach for addressing
this challenge is the focus of this work.

Some of the learning platforms mentioned include means
for automated assessment of student learning through online
quizzes and, in the case of programming classes, software-
checkers. Many textbook publishers also offer Online Home-
work Systems that include banks of exam and homework
questions. Some of these systems, as well as many Learning
Management Systems (such as Blackboard, Moodle, and
Canvas), can allow an instructor to create their own online
assessments [6]. These assessments can be multiple-choice
or open response. At their best, an instructor may be able
to create a template for a numerical problem where the
specific numbers employed are randomly generated. This
helps to prevent individual students from copying each oth-
ers’ answers, and also allows students to gain more practice
by repeating a specific problem multiple times with new
numbers inserted each time.

In our application, we employ a software-checker to
test student-written computer programs. The use of auto-
mated software-checkers are quite common in programming
courses [7], [8], but less so in general science and engineer-
ing courses. By formulating their solutions as a program, the
students are in a sense doing the inverse of what they would
do in an online homework system since it is the student who
is formulating the “template” of the solution. Only in the
testing of the solution are actual numbers employed.

The obvious advantage of employing these automated
assessment tools is that they can save an instructor a great
deal of time since they don’t need to grade each individual
student’s assignment or exam. These time-savings can then
free the instructor to spend more of their time interacting
with students, answering questions, leading laboratories, and
developing other opportunities for active learning [9], [10],
[11]. Besides saving the instructors’ time, these tools can
also make the learning process more efficient by providing
the student, and the instructor, more immediate feedback.
If a student performs a problem incorrectly, they know
immediately and can work to correct any misconceptions
they may have. The student doesn’t have to wait until they
have access to the instructor, or worse, until they receive their
graded homework back from the instructor, before they can
determine that they misunderstood a concept. Similarly, an
instructor can receive feedback about the performance of the
class in real-time, and can address it sooner, than if they had

2018 Annual American Control Conference (ACC)
June 27–29, 2018. Wisconsin Center, Milwaukee, USA

978-1-5386-5428-6/$31.00 ©2018 AACC 345

to wait until all of the students had turned in their assignment
and those assignments had been graded. Feedback is widely
known to improve student learning [12] and some research,
in particular, demonstrates the benefits of automated systems
that provide immediate feedback [13], [14].

The challenge that arises with these automated grading
tools is that it can be difficult to assess more open-ended type
problems, such as those typical to an upper-division course
in engineering or science. The work described in this paper,
specifically, attempted to implement an automated grading
system for the System Dynamics and Control curriculum,
though it is believed that the lessons learned here are broadly
applicable. Some of the challenge of assessment in modeling
and control courses is that the assignments are often design-
oriented where there can be many acceptable approaches and
solutions, and further, the solutions are often symbolic or
graphical in nature, rather than simply numeric.

For this work, the students were required to formulate
the solutions to their assigned problems as scripts in the
MATLAB programming language. Each script was then run
against a series of test cases to determine if the script
generated the correct output for a given selection of inputs.
A couple of further advantages of formulating the students’
assignments in this manner is that it gives the students
additional experience in coding and algorithmic thinking
in the context of non-programming courses. These skills
have become increasingly important as technology contin-
ues to change the role and skills needed by the modern
engineer [15]. Additionally, this approach to grading gives
students some exposure to the typical industrial development
process. In industry, an engineer’s work typically isn’t re-
viewed line by line, but rather, the design is tested against
some set of objective, measurable requirements.

Student assignments were written in and tested us-
ing the Cody Coursework environment offered by the
MathWorks [16]. The Cody Coursework environment is a
software-checker that has several built-in tools that assist
students in formulating their solutions and assist the in-
structor in generating problems, providing student feedback,
and grading student solutions. However, the majority of
the approaches outlined in this work can be implemented
employing alternative software-checking programs or general
course management tools. The authors piloted their use of
this automated grading system as part of the first two courses
of the control systems sequence at the University of Detroit
Mercy in the Fall of 2016 and the Winter of 2017.

The remainder of this paper is structured as follows: Sec-
tion II presents an overview of how the courses were imple-
mented in the context of the Cody Coursework environment,
Section III outlines how the software-checking tool was
integrated into the System Dynamics and Control curriculum,
Section IV presents some results from the implementation
of the courses, and Section V draws some conclusions and
proposes some directions for future work.

II. OVERVIEW OF IMPLEMENTATION

The piloting of this approach to automated grading took
place in the first two courses of the controls sequence which
focus on modeling, system analysis, and controller design.
The courses are primarily taken by upper division and first-
year graduate students in electrical and mechanical engineer-
ing. Historically, these courses have included weekly, hand-
graded homework assignments. These assignments have re-
lied heavily on MATLAB functionality for calculations and
plotting, but the majority of the work was performed with
“paper and pencil.” In the two pilot courses, approximately
half of the homework problems (about three per week) were
replaced with problems that required the students to write a
MATLAB script to implement their solution. Each solution
script was then automatically graded by checking the outputs
of the script against a set of expected outputs for a predefined
set of inputs.

A. The Cody Coursework Environment

In this work, the Cody Coursework environment from the
MathWorks was employed for the authoring and automated
grading of the students’ MATLAB scripts. Cody Coursework
provides built-in functionality to assist the instructor as well
as the students.

Within the Cody environment, an instructor can create
a course and individual assignments, each with their own
due date. The instructor can then author problems to
populate each assignment. Cody Coursework provides
tools for problem authoring that allow the instructor to
employ different fonts and bullets, to include images and
equations (using LaTeX syntax), and to link to external
web pages (like MathWorks help pages), in order to
make a problem easier to understand for the students.
An example problem statement in the Cody environment
is displayed in Fig. 1. The instructor can then create a
suite of test cases that can be alternately made visible
to, or hidden from, the students. There are also several
built-in MATLAB functions that can be employed in
writing test cases that make checking student solutions
simpler, while providing the students useful feedback.
A few of these include: assessVariableEqual,
assessFunctionAbsence, and
assessFunctionPresence.

In the authoring process, the instructor can implement
a problem solution that can be used for testing and is
available to other instructors. The instructor can also include
a template file where a starting point can be provided to
the students. The template could provide comments as to
which variables are available in the workspace, as well the
outline of a solution, or the syntax for a MATLAB function
the students are to use. Once a student has completed a
solution, they then have the option to Test or Submit their
solution. The Test button runs the student’s solution against
only the visible test cases, while the Submit button tests the
solution against both the visible and the hidden test cases.
The instructor can decide how many times the students are
able to “submit” their solutions.

346

Fig. 1. Example problem statement in Cody Coursework

Cody Coursework further provides the instructor tools for
grading and tracking class progress. The informatics tool
available within the Cody environment is illustrated by the
example visualization of student solutions for one assigned
problem in Fig. 2. This tool displays each solution by its
size in the order of its arrival. It also displays whether a
submission is correct or not. This tool allows an instructor
to quickly assess the success of the class in attempting
a given problem, in real-time. Further, the tool can help
identify solutions that are very similar (possible incidences of
cheating) or that are outliers (possibly done in an unintended
manner). Further, the instructor can inspect an individual
solution by clicking on the corresponding marker in the tool.

Fig. 2. Example of the Cody Coursework informatics tool

An instructor can also generate reports for a given problem
which can assist with grading. A report can identify when
a solution was submitted, how large it is, whether it is
correct or not, and how many of the test cases were passed.

An instructor can then assign credit based on whether the
solution is correct, or can assign partial credit based on how
many test cases were passed or based on the size of the
submitted solution.

B. Possible Implementation Challenges

As with any new approach to pedagogy, there may be
some resistance from the students. The student attitudes from
the two courses in this pilot were mostly positive and are
explored in detail in Section IV. One way to break down
barriers with students is to spend a little time explaining
the motivation for employing the approach. The use of new
tools also may require some additional instruction. In our
courses, the necessary instruction was minimal since the
students were already familiar with MATLAB and because
they found the Cody environment relatively easy to use.

Implementing assignments in this manner also pre-
sented some minor challenges that required a little thought
to address. For one, since the grading is performed
only based on the output of the students’ scripts, stu-
dents may not employ the instructed approach. One
best practice is to always employ at least one hidden
test case. This prevents students from hard-coding an-
swers to the visible test cases in their scripts. Use of
the MATLAB functions assessFunctionAbsence and
assessFunctionPresence can also help to ensure that
students don’t use a prohibited MATLAB function, or alter-
natively, that they do use a particular MATLAB function. A
final check is to use the Cody informatics tool to identify
outlier submissions whose size indicates that the approach
employed may be significantly different than the rest of the
class.

Another challenge in writing problems for a software
checker is capturing equivalent student solutions. For exam-
ple, do the provided test cases allow for sufficient differ-
ences in tolerance and data type when testing outputs? The
MATLAB function assessVariableEqual helps in this
regard in that it allows tolerance to be set as an option, and
further, it provides error messages to the user indicating when
the two variables being compared are of different data type
or size. Other examples of capturing equivalent solutions
include angles and symbolic solutions. For example, the
angles -90 degrees and 270 degrees are equivalent, but your
test case may not identify them as such. One approach
in that case is to compare the outputs of a trigonometric
function, rather than the angles directly. Another example is
comparing two transfer functions where one transfer function
may have an extra common factor in the numerator and
the denominator. In that case, you may need employ the
minreal function to capture a pole-zero cancellation, or if
the common factor is just a constant, you may just compare
the transfer functions’ poles, zeros, and DC gains, rather
than comparing the transfer functions directly. Something
that can put an instructor at ease is to remember that your
solution and test cases don’t have to work for all cases
(positive/negative inputs, real/complex inputs, stable/unstable

347

systems, minimum/non-minimum phase systems), they only
have to work for the cases you specify.

In the following section, examples of how to address
some of these challenges, as well as how to provide useful
feedback to the students, are detailed. More generally, the
conversion of “traditional” modeling and controls homework
problems to a form that can be automatically graded is
discussed.

III. INTEGRATING INTO THE SYSTEM DYNAMICS AND
CONTROL CURRICULUM

Coding assignments are well-suited to grading by a
software-checking program and have seen wide application
of such tools. Solutions to some typical homework problems
in the System Dynamics and Control curriculum also are
straightforward to implement as MATLAB scripts; for exam-
ple, problems that can be solved algebraically, or that simply
involve calling MATLAB functions. Other types of modeling
and control problems, however, are symbolic, or graphical, or
more design-oriented, and require some re-framing in order
for the students to implement their solutions as MATLAB
scripts.

A. Algebraic Problems

Consider an example problem where the student is to
calculate the control gains K1 and K2 for the feedback
system shown in Fig. 3 in order to achieve a specific peak
time tp and maximum percent overshoot Mp for the system’s
step response.

Fig. 3. Feedback system for an example homework problem

In this case, the closed-loop transfer function has the
form of a canonical second-order system and the gains can
be calculated as an algebraic function of the given plant
parameters (a,b) and the given step response requirements
(tp,Mp). In this manner, the solution isn’t much different
than what a student would do with paper and pencil, they
just need to express their calculations as a MATLAB script,
such as the following:

wd = pi/tp;
zeta = sqrt(log(Mp)ˆ2/(piˆ2 + log(Mp)ˆ2));
wn = wd/(sqrt(1-zetaˆ2));
K2 = (2*zeta*wn - b)/a;
K1 = wnˆ2/a;

Even with this simple example, the use of a software-
checking tool can add value to the students by demonstrat-
ing how their solution is verified against the performance
produced by the controller they designed, rather than by
checking the controller itself. Furthermore, the visible test
case provided to the students can also introduce them to
alternative MATLAB commands. An example Test Case for
this problem is shown in Fig. 4.

Fig. 4. Example visible test case in Cody Coursework

B. Symbolic Problems

Another class of problems common to modeling and
controls courses require the generation of a symbolic so-
lution. For example, the students may be asked to find the
function that is the solution of a given differential equation,
or to find the function representing the output of a dynamic
system represented as a transfer function. One approach to
these problems that would work within Cody Coursework
would be to allow the students to use the Symbolic Math
Toolbox for MATLAB. Many instructors, however, desire
that the students learn (and demonstrate) how to generate
the solutions themselves. In this case, one approach would
be to provide the students the structure of the expected
solution within the problem statement, and then have the
students generate a script for calculating the parameters of
the provided solution.

For example, consider that the the students are asked to
symbolically solve the first-order differential equation

aẋ(t) + bx(t) = sin(ωt) (1)

for the given initial condition x(0) = x0. Within the problem
statement, the students could be provided the structure of the
solution

x(t) = Aert +B sin(ωt) + C cos(ωt) (2)

and could be asked to write a script to calculate the pa-
rameters of the solution (r, A, B, C) based on specific
coefficients of the given differential equation (a, b, ω).
Again, the students will perform their solution primarily with

348

paper and pencil, and will only write the script to represent
their final symbolic solution, such as in the following. This
is consistent with the recommendation commonly made to
students that they should perform their work symbolically,
and should only substitute the numbers at the end of their
solution process.

r = -b/a;
M = [b, -a*w; a*w, b];
result = inv(M)*[1 0]’;
B = result(1);
C = result(2);
A = x0 - C;

Another common type of homework problem requires
students to generate a symbolic mathematical model, for
example, the governing equation(s) or transfer function rep-
resentation of a physical system. In this case, it may not be
necessary to provide the structure of the solution since we
know the structure of a transfer function (or a linear differ-
ential equation). Rather, we can check the characteristics of
the resulting model (coefficients, poles, roots of characteristic
equation, etc.) for a given set of numerical parameters (mass,
spring constant, capacitance, etc.).

For example, consider a problem where students are asked
to determine the transfer function model of the system in
Fig. 5 for an input of force f and an output of position y1.

Fig. 5. Mass-spring-damper system for an example modeling problem

The MATLAB script solution submitted by the student
would then just be a representation of the transfer function
in terms of the available system variables, such as shown in
the following. The script would then be tested against the
poles, zeros, and DC gain of the “correct” transfer function
model for a given set of numerical parameters.

num = k;
den = [m1*m2 m2*b (m1+m2)*k k*b 0];
G = tf(num,den);

C. Graphical Problems

Much of the analysis and design performed in control
system courses requires the generation of graphs such as time
response plots, frequency response plots, and the root locus.
While a software-checking program can’t exactly evaluate a
graph, it can check the computation of individual points on
a graph or specific aspects of a graph. Cody Coursework
then allows the generation of plots corresponding to the
calculations being evaluated as a visual means of providing
feedback to the students.

For example, consider a problem that requires the students
to generate the Bode magnitude plot for a given transfer
function. In the test suite, you could provide as inputs the
transfer function as well as a vector of frequencies at which
the magnitude of the system is to be calculated. The output
of the student-generated script would then be tested against
the expected vector of magnitudes. An example solution is
shown in the following.

for k = 1:length(w)
top = polyval(num,i*w(k));
bottom = polyval(den,i*w(k));
mag(k) = abs(top/bottom);

end

semilogx(w,20*log10(mag),’*’)
title(’Bode Magnitude Plot’)
xlabel(’frequency (rad/sec)’)
ylabel(’magnitude (dB)’)

In this test suite, numerous built-in MATLAB functions
were disallowed, for example, functions such as bode,
freqresp, evalfr, frd, and idfrd. Depending on the
goals of the problem, an instructor could provide some
starter elements within the solution template. For example,
an instructor could provide the structure of the for-loop, or
could provide the syntax for generating the Bode plot using
the data calculated by the student’s script. The Bode plot
that is produced isn’t evaluated by the software-checker, but
it can provide the student insight. The output of the provided
student solution is shown in Fig. 6.

Fig. 6. Example output for a numerical graphical problem

An alternative to generating a plot numerically, point by
point, is to have the students calculate important characteris-
tics of a graph. In the case of a step response plot, this could
include the overshoot, peak time, or settling time. In the case
of a Bode plot, the students could be required to calculate a
break frequency, crossover frequency, or resonant magnitude.
For a root locus plot, the characteristics might be angles of
arrival/departure, break-away/break-in points, or crossings of
the imaginary axis.

Rather than having students generate a graph, it is also
common to ask students to interpret a given graph. Within a

349

software-checking environment, this type of problem could
be implemented by either providing as inputs specific char-
acteristics of a graph (maximum overshoot, peak time, phase
margin, etc.), or by providing vectors of data corresponding
to a graph. In the case that the inputs are vectors of
data, the students could be required to perform interpolation
in order to identify the specific characteristics of interest.
Alternatively, the students could be allowed to employ built-
in MATLAB functions to determine important characteris-
tics. Some such functions include max, min, stepinfo,
lsiminfo, and margin.

The following script employs the stepinfo command to
assist in identifying a canonical, underdamped, second-order
system based on a given set of step response data (time (t)
versus output (y)).

S = stepinfo(y,t,yfinal);

Mp = S.Overshoot/100;
tp = S.PeakTime;

wd = pi/tp;
z = sqrt((log(Mp))ˆ2/(piˆ2+(log(Mp))ˆ2));
wn = wd/sqrt(1-zˆ2);
K = yfinal*wnˆ2;

D. Design Problems

Design of controllers, and systems in general, is another
common type of problem found in the modeling and con-
trols curriculum. If the system of interest does not have a
simple, standard form, then these problems often involve
some iteration where a parameter is tuned until the design
requirements are met. Requiring students to generate a script
that formalizes the rules for how this iteration is performed
can actually be a benefit. Sometimes students solve these
design problems with an element of guess and check, without
truly specifying the details of their thought process.

In these design problems, it may be desirable to provide
the students the structure of the logic for performing the re-
quired iteration. The following template provides the outline
of a solution for designing a lead compensator, C, for a given
plant model, P, in order to achieve a specific phase margin
and level of steady-state error. An element that is added here
is a condition for exiting the iteration if the solution does not
seem to be converging.

i = 0; % loop counter

while((abs(Pm_goal-Pm)>0.1) && (i<100))
C = ;
[Gm,Pm,Wgm,Wpm] = margin(C*P);
i = i+1;

end

if i == 100
msg=’Not solved within 100 iterations’;
error(msg)

end

E. Conceptual Problems

A type of problem that a software-checker is not very
good for evaluating are more open-response problems. One
option is to employ a multiple-choice format, but a software-
checker isn’t really needed for evaluating such problems.
Another alternative is to have the students go through some
process, then just draw their attention to the conclusion they
are supposed to come to. For example, consider a problem
that asks the students to generate a series of graphs as a
parameter is varied and then notice a trend. In the test suite
employed within Cody, the solution could generate a figure
with a title that highlights the trend the student is supposed to
notice. For example, the graphs shown in Fig. 7 demonstrate
how the peak magnitude in a Bode plot decreases as the
amount of damping in the system is increased.

Fig. 7. Example output for a conceptual graphical problem

IV. RESULTS FROM PILOT COURSES

The application of this automated grading system was
piloted in ELEE 5700: Controls II in the fall of 2017, as well
as in ENGR 4220: Control Systems in the winter of 2018.
ENGR 4220 is the introductory course on modeling and
control and is primarily taken by undergraduate electrical,
mechanical, and robotics engineering students in their junior
or senior year. ELEE 5700 is the follow-on controls course
and is primarily taken by first-year graduate students or
senior-level undergraduate students as a technical elective.

Post-course surveys were obtained from 25 of the 31
students that were enrolled in these two courses. Only 3
of the obtained surveys were from students in ELEE 5700,
with the remaining 22 coming from students in ENGR 4220.
The background information obtained from the students
indicated that, overall, they had pretty good programming
background, but that they had minimal experience with
automated software-checking programs. Specifically, all but
one student had prior computer programming experience and
all but two students had prior experience with MATLAB.
Only 31% of the students had taken a programming course

350

where their assignments had been automatically graded by a
software-checking program, while approximately 54% of the
students had experience with an online homework system.

The students’ attitudes towards the approach taken in the
two courses were evaluated based on their responses to
survey questions employing a Likert-type scale, as well as
their opinions expressed via some open-response questions.
Overall, it seemed that the students mostly found the ap-
proach beneficial, especially in the case that there wasn’t a
grader available to evaluate their paper and pencil solutions.
In the following, the students responded employing a scale
of 1 (strongly disagree) through 5 (strongly agree).

• The immediate feedback generated when submitting (in-
correct) test solutions was helpful in debugging solution
errors. (avg = 3.91)

• If I had a class where weekly homework assignments
were not graded, I would appreciate the use of Cody-
type problems. (avg = 3.91)

It also seemed that the students found the approach provided
a side benefit of improving their programming skills.

• These problems helped me improve my understanding
and knowledge of the MATLAB programming lan-
guage. (avg = 4.05)

• These problems helped me improve/refresh my com-
puter programming skills in general. (avg = 3.96)

It is not as clear that the students prefer this approach to
more traditional “paper and pencil” type problems.

• I would like to see Cody-type problems employed in
my other classes. (avg = 3.27)

• The solution of a Cody problem is more challenging
than solving an equivalent “paper and pencil” problem.
(avg = 3.68)

The free response questions primarily indicated that the
students liked the overall approach and appreciated the
immediate feedback. Some students, however, struggled with
translating their paper-and-pencil solutions into a MATLAB
script and were frustrated in debugging their solutions when
they didn’t pass the hidden use cases. It is the authors’
opinion that some of these challenges could be mitigated as
the problem statements and feedback provided to the students
is improved.

V. CONCLUSION AND FUTURE WORK

In this paper, motivation and guidelines for employing
a software-checking program for the automated grading of
assignments in the System Dynamics and Control curricu-
lum were presented. In particular, techniques for converting
typical homework problems that may be symbolic, graphi-
cal, and/or design-oriented in nature were discussed in the
context of the Cody Coursework environment offered by the
MathWorks.

The paper also presented results from the piloting of this
approach in two course offerings at the University of Detroit
Mercy in the Fall of 2016 and the Winter of 2017. Overall,
anonymous surveys of student attitudes indicated that the
students appreciated the use of the Cody Coursework tool

and found it helpful to their learning. Future directions of
this work include formally assessing the effect of using this
automated grading tool on student learning outcomes.

During the course of this project, 90 homework
problems were created in Cody Coursework for use
in courses on the modeling, analysis, and control of
dynamic systems. A copy of the current instantiation
of this course on Feedback Control can be accessed
from: https://coursework.mathworks.com/
courses/4431-copy-of-feedback-control.
The overall Cody Coursework Catalog available
from the MathWorks also can be found at:
https://coursework.mathworks.com/catalog.
An updated version of this course on Feedback Control will
eventually be added to the catalog.

REFERENCES

[1] CollegeBoard, “Average rates of growth of published charges
by decade,” https://trends.collegeboard.org/college-pricing/figures-
tables/average-rates-growth-published-charges-decade, accessed:
9-11-2017.

[2] J. Kay, P. Reimann, E. Diebold, and B. Kummerfeld, “MOOCs: So
many learners, so much potential...” IEEE Intelligent Systems, vol. 28,
no. 3, pp. 70–77, 2013.

[3] S. Iqbal, X. Zang, Y. Zhu, Y. Y. Chen, and J. Zhao, “On the impact
of MOOCs on engineering education,” in MOOC, Innovation and
Technology in Education (MITE), 2014 IEEE International Conference
on. IEEE, 2014, pp. 101–104.

[4] A. Chauhan, “Massive open online courses (MOOCs): Emerging
trends in assessment and accreditation,” Digital Education Review,
no. 25, pp. 7–17, 2014.

[5] C. Piech, J. Huang, Z. Chen, C. Do, A. Ng, and D. Koller, “Tuned
models of peer assessment in MOOCs,” in Educational Data Mining
2013, 2013.

[6] L. C. Chirwa, “A case study on the impact of automated assessment
in engineering mathematics,” engineering education, vol. 3, no. 1, pp.
13–20, 2008.

[7] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, “Review of re-
cent systems for automatic assessment of programming assignments,”
in Proceedings of the 10th Koli Calling International Conference on
Computing Education Research. ACM, 2010, pp. 86–93.

[8] T. Staubitz, H. Klement, J. Renz, R. Teusner, and C. Meinel, “Towards
practical programming exercises and automated assessment in Massive
Open Online Courses,” in Teaching, Assessment, and Learning for
Engineering (TALE), 2015 IEEE International Conference on. IEEE,
2015, pp. 23–30.

[9] J. A. Rossiter, S. Dormido, L. Vlacic, B. L. Jones, and R. Murray,
“Opportunities and good practice in control education: a survey,” IFAC
Proceedings Volumes, vol. 47, no. 3, pp. 10 568–10 573, 2014.

[10] R. Hill, “Hardware-based activities for flipping the system dynamics
and control curriculum,” in American Control Conference (ACC),
2015, pp. 2777–2782.

[11] R. M. Reck, “Applying a common framework to develop under-
graduate control systems laboratory kits,” in Frontiers in Education
Conference (FIE). IEEE, 2017, pp. 1–8.

[12] S. Brown and P. Knight, Assessing learners in higher education.
Psychology Press, 1994.

[13] M. Richards-Babb, J. Drelick, Z. Henry, and J. Robertson-Honecker,
“Online homework, help or hindrance? What students think and how
they perform,” Journal of College Science Teaching, vol. 40, no. 4,
p. 81, 2011.

[14] M. L. Arora, Y. J. Rho, and C. Masson, “Longitudinal study of online
statics homework as a method to improve learning,” Journal of STEM
Education: Innovations and Research, vol. 14, no. 1, p. 36, 2013.

[15] J. A. Cook and T. Samad, “Controls curriculum survey: A CSS
outreach task force report,” November, 5 2009.

[16] MathWorks, “MATLAB Cody Coursework,”
https://www.mathworks.com/academia/cody-coursework.html,
accessed: 09-11-2017.

351

